16 research outputs found

    Next Generation Auto-Identification and Traceability Technologies for Industry 5.0: A Methodology and Practical Use Case for the Shipbuilding Industry

    Get PDF
    [Abstract] Industry 5.0 follows the steps of the Industry 4.0 paradigm and seeks for revolutionizing the way industries operate. In fact, Industry 5.0 focuses on research and innovation to support industrial production sustainability and place the well-being of industrial workers at the center of the production process. Thus, Industry 5.0 relies on three pillars: it is human-centric, it encourages sustainability and it is aimed at developing resilience against disruptions. Such core aspects cannot be fully achieved without a transparent end-to-end human-centered traceability throughout the value chain. As a consequence, Auto-Identification (Auto-ID) technologies play a key role, since they are able to provide automated item recognition, positioning and tracking without human intervention or in cooperation with industrial operators. Although the most popular Auto-ID technologies provide a certain degree of security and productivity, there are still open challenges for future Industry 5.0 factories. This article analyzes and evaluates the Auto-ID landscape and delivers a holistic perspective and understanding of the most popular and the latest technologies, looking for solutions that cope with harsh, diverse and complex industrial scenarios. In addition, it describes a methodology for selecting Auto-ID technologies for Industry 5.0 factories. Such a methodology is applied to a specific use case of the shipbuilding industry that requires identifying the main components of a ship during its construction and repair. To validate the outcomes of the methodology, a practical evaluation of passive and active UHF RFID tags was performed in an Offshore Patrol Vessel (OPV) under construction, showing that a careful selection and evaluation of the tags enables product identification and tracking even in areas with a very high density of metallic objects. As a result, this article serves as a useful guide for industrial stakeholders, including future developers and managers that seek for deploying identification and traceability technologies in Industry 5.0 scenarios.This work was supported in part by the Auto-Identication for Intelligent Products Research Line of the Navantia-Universidade da Coruña Joint Research Unit under Grant IN853B-2018/02, and in part by the Centro de Investigación de Galicia ``CITIC,'' funded by Xunta de Galicia and the European Union (European Regional Development Fund-Galicia 2014_2020 Program) under Grant ED431G 2019/01Xunta de Galicia; IN853B-2018/02Xunta de Galicia; ED431G 2019/0

    Ultra Wideband for Shipyard 5.0 Indoor Gantry Crane High-Precision Positioning

    Get PDF
    Cursos e Congresos, C-155[Abstract] The shipyard of the future, called Shipyard 5.0, is a highly technological environment where real-time monitoring of products, by-products and transport vehicles is crucial. Among the technologies able to locate such elements indoors, Ultra Wideband (UWB) is a good option for providing accurate positioning. However, the use of UWB in shipyards faces challenges due to interference from metallic objects, which impacts its accuracy. To validate the use of UWB in a shipyard, this paper presents tests that were carried out in workshops that Navantia owns in Ferrol’s estuary, where UWB tags were placed on a gantry crane hook. The presented results show the performance of the system when locating the hook in 3D and the impact of attaching multiple tags to the hook to harness signal diversity. Specifically, a relatively lowerror is obtained when estimating only the height of the gantry crane hook (approximately 1 m), while the threedimensional positioning error reached an error of between 2 and 3m for the z-axisXunta de Galicia; IN853C 2022/01Xunta de Galicia; ED431C 2020/15This work has been funded by CITIC that is funded by the Xunta de Galicia through the collaboration agreement between the Consellería de Cultura, Educación, Formación Profesional e Universidades and the Galician universities for the reinforcement of the research centres of the Galician University System (CIGUS), by the Xunta de Galicia (by grant ED431C 2020/15), and by grant PID2020-118857RA-100 (ORBALLO) funded by MCIN/AEI/10.13039/501100011033. In addition, this work has been supported by Xunta de Galicia through Axencia Galega de Innovación (GAIN) by grant IN853C 2022/01, Centro Mixto de Investigaci ón UDC-NAVANTIA “O estaleiro do futuro”, which is ongoing until the end of September 2025. The support was inherited from both the starting and consolidation stages of the same project throughout 2015- 2018 and 2018-2021, respectively. This stage is also co-funded by ERDF funds from the EU in the framework of program FEDER Galicia 2021-202

    LoRaWAN and Blockchain based Safety and Health Monitoring System for Industry 4.0 Operators

    Get PDF
    [Abstract] The latest advances in the different Industry 4.0 technologies have enabled the automation and optimization of complex tasks of production processes thanks to their ability to monitor and track the state of physical elements like machinery, environmental sensors/actuators or industrial operators. This paper focuses on the latter and presents the design and evaluation of a system for monitoring industrial workers that provides a near real-time decentralized response system aimed at reacting and tracing events that affect operator personal safety and health. Such a monitoring system is based on the information collected from sensors encapsulated in IoT wearables that are used to measure both personal and environmental data. The communications architecture relies on LoRaWAN, an LPWAN (Low-Power Wide-Area Network) technology that offers good reliability in harsh communications environments and that provides relatively long distance communications with low-energy consumption. Specifically, each wearable sends the collected information (e.g., heart rate, altitude, external temperature, gas concentration, location) from the sensors to the nearest LoRaWAN gateway, which is transmitted to a pool of nodes where information is stored in a distributed manner. Such a decentralized system allows for providing information redundancy and guarantees its availability as long as there is an operative node. In addition, the proposed system is able to store and to process the collected data through smart contracts in a blockchain, which eliminate the need for a central backend and ensure the traceability and immutability of such data in order to share them with third parties (e.g., insurance companies or medical services).Xunta de Galicia; IN853B-2018/0

    Design and Empirical Validation of a Bluetooth 5 Fog Computing Based Industrial CPS Architecture for Intelligent Industry 4.0 Shipyard Workshops

    Get PDF
    [Abstract] Navantia, one of largest European shipbuilders, is creating a fog computing based Industrial Cyber-Physical System (ICPS) for monitoring in real-time its pipe workshops in order to track pipes and keep their traceability. The deployment of the ICPS is a unique industrial challenge in terms of communications, since in a pipe workshop there is a significant number of metallic objects with heterogeneous typologies. There are multiple technologies that can be used to track pipes, but this article focuses on Bluetooth 5, which is a relatively new technology that represents a cost-effective solution to cope with harsh environments, since it has been significantly enhanced in terms of low power consumption, range, speed and broadcasting capacity. Thus, it is proposed a Bluetooth 5 fog computing based ICPS architecture that is designed to support physically-distributed and low-latency Industry 4.0 applications that off-load network traffic and computational resources from the cloud. In order to validate the proposed ICPS design, one of the Navantia’s pipe workshops was modeled through an in-house developed 3D-ray launching radio planning simulator that allows for estimating the coverage provided by the deployed Bluetooth 5 fog computing nodes and Bluetooth 5 tags. The experiments described in this article show that the radio propagation results obtained by the simulation tool are really close to the ones obtained through empirical measurements. As a consequence, the simulation tool is able to reduce ICPS design and deployment time and provide guidelines to future developers when deploying Bluetooth 5 fog computing nodes and tags in complex industrial scenarios.Auto-ID for Intelligent Products research line of the Navantia-UDC Joint Research Unit (Grant Number: IN853B-2018/02) 10.13039/100014440-Ministerio de Ciencia, Innovaci??n y Universidades (Grant Number: RTI2018-095499-B-C31

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Full text link
    We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2

    Modernity, Modernism, Postmodernism

    No full text
    Conference on Modernism and Modernity (1997, Santiago de Compostela

    In Mortal Shakespeare. Radical Readings

    No full text
    A conference on William Shakespeare took place during the second week of November, 1987, in Saint Jacques of Compostela
    corecore